ข้ามไปที่เนื้อหาหลัก

นายธีรพัฒน์ ทองดี ปวส.1 ช่างโทรคมนาคม กลุาม1-2 เลขที่10

การทำงานของเครื่องส่งวิทยุ AM , FM

หลักการทำงานของเครื่องส่งวิทยุ AM

 การทำงานของวิทยุเอเอ็ม เริ่มจากที่สถานีต้นทาง เมื่อเริ่มมีการออกอาอาศ สัญญาณเสียงต่างๆ ที่มีความถี่ต่ำมนุษย์สามารถได้ยินได้ในระยะใกล้นั้น จะถูกส่งไปเปลี่ยนรูปเป็นสัญญาณทางไฟฟ้าทางไมโครโฟน(หรืออุปกรณ์อื่น) คลื่นที่ถูกเปลี่ยนจะถูกนำไปที่ตัวเครื่องส่ง (Transmitter) ปรับกับคลื่นสัญญาณอีกตัวหนึ่ง ซึ่งมีความถี่สูงมาก เรียกว่าคลื่นนำพา โดยคลื่นนำพานี้จะมีความแตกต่างกันไปในแต่ละสถานีเช่น สถานี ก. มีคลื่นนำพาที่มีค่าความถี่หนึ่ง ส่วนสถานี ข. จะมีีคลื่นนำพาที่มีค่าความถี่อีกค่าอีกหนึ่ง ซึ่งต้องต่างจากสถานี ก. รวมถึงสถานีอื่นๆที่มีการตั้งอยู่ก่อนด้วย โดยคลื่นเสียงที่เข้ามาจะไปบังคับให้คลื่นนำพามีการเปลี่ยนแปลงแอมพลิจูดตามคลื่นเสียงแต่มีความถี่เท่าเดิม ซึ่งคลื่นตัวนี้จะถูกส่งออกไปในอากาศจากเสาส่ง เป็นอันเสร็จสิ้นกระบวนการส่งสัญญาณ


    หลักการทำงานของเครื่องส่งวิทยุ FM
               

 หลักการทำงานคือ หลังจากที่ได้รับตัวสัญญาณเสียงจากไมโครโฟนหรือแหล่งเสียงอื่นๆแล้ว สัญญาณเสียงจะถูกเปลี่ยนรูปเป็นสัญญาณไฟฟ้า สัญญาณไฟฟ้านั้นจะถูกนำไปเข้าระบบ Amplifier เพื่อขยายกำลังของสัญญาณเสียงที่ได้ หลังจากขยายแล้ว ก็จะนำส่งต่อไปยังภาคของ Modulation โดยสัญญาณที่จะนำมา Modulation ด้วยนั้นคือสัญญาณจากตัว Oscillator ซึ่งจะผลิตความถี่ได้ในช่วง 88 - 108 MHz

ในวงจร Mixer จะทำการผสมสัญญาณRF กับสัญญาณจาก Local Oscillator ซึ่งความถี่ทั้งสองนี้จะห่างกันอยู่ เท่ากับ 455 KHz พอดี (ห่างกันเท่ากับความถี่ IF) สมมุติว่าเราต้องการรับสัญญาณวิทยุ AM ที่ความถี่ 1000 KHz วงจรขยาย RF ก็ต้องจูนและขยายความถี่ 1000 KHz เป็นหลัก และยอมให้ความถี่ใกล้เคียงบริเวณ 1000 KHz เข้ามาได้เล็กน้อย การจูนความถี่นอกจากจะจูนภาคขยาย RF แล้วยังจะจูนวงจร Local Oscillator ด้วย (วิทยุ AM แบบใช้มือจูน) ความถี่ของ Local Oscillator จะเท่ากับ 1000 KHz +455 KHz = 1455 KHz พอดี
เมื่อสัญญาณทั้ง RF และจาก Local Oscillator ป้อนเข้ามาที่วงจร Mixer ซึ่งเป็นวงจรที่ทำงานแบบ นอนลิเนียร์ สัญญาณที่ออกมาจะมี่ทั้งสัญญาณผลบวกและผลต่าง เมื่อป้อนให้กับวงจร IF ซึ่งจูนรับความถี่ 455 KHz ดังนั้นสัญญาณผลรวมจะถูกตัดทิ้งไป คงไว้แต่สัญญาณของความถี่ผลต่าง (1455 KHZ - 1000 KHz = 455 KHz)วงจรขยาย IF ก็คือวงจรขยาย RF ที่จูนความถี่เอาไว้เฉพาะ ที่ความถี่ 455 KHz วงจรขยาย IF อาจจะมีด้วยกันหลายภาค เพื่อให้มีอัตราการขยายสัญญาณที่รับได้สูง ๆ และ การเลือกรับสัญญาณที่ดี เนื่อจาหวงจรนี้ขยายความถี่คงที่จึงทำให้ง่ายต่อการออกแบบ สัญญาณที่ขยายแล้วจะเข้าสู่กระบวนการ Detector เพื่อแยกสัญญาณเสียงออกมา
1.สายอากาศ (Antenna) จะทำหน้าที่รับสัญญาณคลื่นวิทยุที่ส่งจากสถานีต่างๆ เข้ามาทั้งหมดโดยไม่จำกัดว่าเป็นสถานีใด ถ้าสถานีนั้นๆ ส่งสัญญาณมาถึง สายอากาศจะส่งสัญญาณต่างๆไปยังภาค RF โดยส่วนใหญ่สายอากาศของเครื่องรับวิทยุ FM จะเป็นแบบไดโพล (Di-Pole) ซึ่งเป็นสายอากาศแบบสองขั้ว จะช่วยทำให้การรับสัญญาณดียิ่งขึ้น
2.ภาคขยาย RF (Radio Frequency Amplifier) จะทำงานเหมือนกับเครื่องรับวิทยุ AM คือจะทำหน้าที่รับสัญญาณวิทยุในย่าน FM 88 MHz – 108 MHz เข้ามาและเลือกรับสัญญาณ FM เพียงสถานีเดียวโดยวงจรจูนด์ RF และขยายสัญญาณ RF นั้นให้แรงขึ้น เพื่อให้มีกำลังสูง เหมาะที่จะส่งไปบีท (Beat) หรือผสมในภาคมิกเซอร์ (Mixer) โดยข้อแตกต่างสำคัญของภาคขยาย RF ของเครื่งรับ AM และ FM คือ วิทยุFM ใช้ความถี่สูงกว่า AM ดังนั้นการเลือกอุปกรณ์มาใช้ในวงจรขยายจะต้องหาอุปกรณ์ที่ให้การตอบสนองความถี่ในย่าน FM ได้ และต้องขยายช่องความถี่ที่กว้างของ FM ได้
3.ภาคมิคเซอร์ (Mixer) จะทำงานโดยจะรับสัญญาณเข้ามาสองสัญญาณ ได้แก่สัญญาณ RF จากภาคขยาย RF และสัญญาณ OSC. จากภาคโลคอลออสซิลเลเตอร์ เพื่อผสมสัญญาณ (MIX.) ให้ได้สัญญาณออกเอาท์พุตตามต้องการ สัญญาณที่ออกจากภาคมิกเซอร์มีทั้งหมด 4 ความถี่ คือ

a)     ความถี่ RF ที่รับเข้ามาจากวงจรจูน RF (RF)

b)     ความถี่ OSC. ที่ส่งมาจากภาคโลคอล ออสซิลเลเตอร์ (OSC.)

c)     ความถี่ผลต่างระหว่าง OSC. กับ RF. จะได้เป็นคลื่นขนาดกลางหรือที่เรียกว่า IF (Intermediate Frequency) ได้ความถี่ 10.7 MHz

d)     ความถี่ผลบวกระหว่าง OSC. กับ RF

ความถี่ที่วงจรจูนด์ IF ให้ผ่านมีความถี่เดียว คือความถี่ IF เท่ากับ 10.7 MHz ไม่ว่าภาคขยาย RF จะรับความถี่เข้ามาเท่าไรก็ตาม และภาค OSC. จะผลิตความถี่ขึ้นมาเท่าไรก็ตาม เมื่อเข้าผสมกันที่ภาคมิกเซอร์แล้วจะได้ความถี่ IF เท่ากับ 10.7 MHz ออกเอาท์พุตเสมอ
4.ภาคโลคอล ออสซิลเลเตอร์ (Local Oscillator) ทำงานเหมือนกับเครื่องรับวิทยุ AM คือ ผลิตความถี่ที่มีความแรงคงที่ขึ้นมา ความถี่ที่ผลิตขึ้นจะสูงกว่าความถี่ที่วงจรจูนด์ RF รับเข้ามาเท่ากับความถี่ IF คือ 10.7 MHz. เช่น วงจรจูนด์ RF รับความถี่เข้ามา 100 MHz. ความถี่ OSC. จะผลิตขึ้นมา 100 MHz. + 10.7 MHz. = 110.7 MHz.
5.ภาคขยาย IF (Intermediate Frequency Amplifier) จะทำหน้าที่เหมือนเครื่องรับวิทยุ AM และยังสามารถขยายความถี่ IF ทั้งของ AM และ FM ได้ ในเครื่องรับวิทยุบางรุ่นที่มีทั้ง AM และ FM ในเครื่องเดียวกัน อาจใช้ภาคขยาย IF ร่วมกันทั้งวิทยุ AM และวิทยุ FM คือขยายความถี่ IF ให้มีระดับความแรงมากขึ้นแบบไม่ผิดเพี้ยน โดยภาคขยาย IF ของคลื่น FM นั้นขยายความถี่ได้ตลอดย่าน 10.7 MHz. นับว่ามีความถี่สูงกว่าเครื่องรับ AM ซึ่งโดยปกติเครื่องรับแบบ AM มีความถี่เพียง 455 kHz. เท่านั้น ส่วนที่แตกต่างกันระหว่างIF ของ AM และ FM คือ ในส่วนวงจรจูนด์ IF เพราะใช้ความถี่ไม่เท่ากัน ค่าความถี่เรโซแนนท์ต่างกัน การกำหนดค่า L, C มาใช้งานต่างกัน
6.ภาคดีเทคเตอร์ (Detector) ดีเทคเตอร์ของเครื่องรับ FM นั้นมีความแตกต่างกับเครื่องรับ AM ทั้งนี้เพราะวิธีผสมคลื่นของสถานีส่งทั้งสองแบบนี้ไม่เหมือนกัน โดยภาคดีเทคเตอร์ทำหน้าที่แยกสัญญาณเสียงออกจากความถี่ IF แต่จะแตกต่างกันในระบบการแยกเสียง เพราะในระบบ AM สัญญาณเสียงถูกผสมมาทางความสูงของคลื่นพาหะ สามารถแยกได้โดยใช้ไดโอดหรือทรานซิสเตอร์ร่วมกับ R, C ฟิลเตอร์ก็สามารถตัดความถี่ IF ออกเหลือเฉพาะสัญญาณเสียงได้ ส่วนในระบบวิทยุ FM สัญญาณเสียงจะผสมกับพาหะ โดยสัญญาณเสียงทำให้คลื่นพาหะเปลี่ยนความถี่สูงขึ้นหรือต่ำลง ส่วนความแรงคงที่ ไม่สามารถใช้วิธีการดีเทคเตอร์แบบ AM ได้ ต้องใช้วิธีพิเศษ เช่น ดิสคริมิเนเตอร์ (Discriminator), เรโชดีเทคเตอร์ (Ratio Detector), เฟส ล็อค ลูป ดีเทคเตอร์ (Phase Lock Loop Detector) เป็นต้น จะแตกต่างจากของ AM โดยสิ้นเชิง
7.ภาคขยายเสียง (Audio Frequency Amplifier) ใช้งานร่วมกับของเครื่องรับวิทยุ AM ได้ เพราะทำหน้าที่ขยายเสียงที่ส่งมาจากภาคดีเทคเตอร์ ให้มีระดับความแรงมากขึ้นแบบไม่ผิดเพี้ยนพอที่จะไปขับลำโพงให้เปล่งเสียงออกมา โดยในเครื่องรับวิทยุบางแบบอาจมีภาคขยายเสียงในตัว แต่บางแบบอาจจะไม่มีเครื่องขยายเสียงในตัว แต่จะมีอยู่ต่างหาก เครื่องรับวิทยุที่มีเครื่องขยายเสียงภายนอกเรียกว่า จูนเนอร์ (Tunner)
8.ภาคจ่ายกำลังไฟ (Power Supply) ทำหน้าที่จ่ายแรงดันไฟ DC เลี้ยงวงจรของเครื่องรับวิทยุ FM ซึ่งจะต้องใช้วงจรเรกกูเลเตอร์ (Regulator) ควบคุมแรงดันไฟ DC ให้คงที่เพื่อเลี้ยงวงจร ทำให้คุณภาพของเครื่องรับวิทยุ FM ดีขึ้น

อธิบายการทำงาน Block ของเครื่องส่งวิทยุ AM , FM

หลักการทำงานของเครื่องส่งวิทยุ AM

            การทำงานของวิทยุเอเอ็ม เริ่มจากที่สถานีต้นทาง เมื่อเริ่มมีการออกอาอาศ สัญญาณเสียงต่างๆ ที่มีความถี่ต่ำมนุษย์สามารถได้ยินได้ในระยะใกล้นั้น จะถูกส่งไปเปลี่ยนรูปเป็นสัญญาณทางไฟฟ้าทางไมโครโฟน(หรืออุปกรณ์อื่น) คลื่นที่ถูกเปลี่ยนจะถูกนำไปที่ตัวเครื่องส่ง (Transmitter) ปรับกับคลื่นสัญญาณอีกตัวหนึ่ง ซึ่งมีความถี่สูงมาก เรียกว่าคลื่นนำพา โดยคลื่นนำพานี้จะมีความแตกต่างกันไปในแต่ละสถานีเช่น สถานี ก. มีคลื่นนำพาที่มีค่าความถี่หนึ่ง ส่วนสถานี ข. จะมีีคลื่นนำพาที่มีค่าความถี่อีกค่าอีกหนึ่ง ซึ่งต้องต่างจากสถานี ก. รวมถึงสถานีอื่นๆที่มีการตั้งอยู่ก่อนด้วย โดยคลื่นเสียงที่เข้ามาจะไปบังคับให้คลื่นนำพามีการเปลี่ยนแปลงแอมพลิจูดตามคลื่นเสียงแต่มีความถี่เท่าเดิม ซึ่งคลื่นตัวนี้จะถูกส่งออกไปในอากาศจากเสาส่ง เป็นอันเสร็จสิ้นกระบวนการส่งสัญญาณ

    หลักการทำงานของเครื่องส่งวิทยุ FM
               


 หลักการทำงานคือ หลังจากที่ได้รับตัวสัญญาณเสียงจากไมโครโฟนหรือแหล่งเสียงอื่นๆแล้ว สัญญาณเสียงจะถูกเปลี่ยนรูปเป็นสัญญาณไฟฟ้า สัญญาณไฟฟ้านั้นจะถูกนำไปเข้าระบบ Amplifier เพื่อขยายกำลังของสัญญาณเสียงที่ได้ หลังจากขยายแล้ว ก็จะนำส่งต่อไปยังภาคของ Modulation โดยสัญญาณที่จะนำมา Modulation ด้วยนั้นคือสัญญาณจากตัว Oscillator ซึ่งจะผลิตความถี่ได้ในช่วง 88 - 108 MHz

                         หลักการทำงานของวิทยุ AM            การทำงานของวิทยุเอเอ็ม เริ่มจากที่สถานีต้นทาง เมื่อเริ่มมีการออกอาอาศ สัญญาณเสียงต่างๆ ที่มีความถี่ต่ำมนุษย์สามารถได้ยินได้ในระยะใกล้นั้น จะถูกส่งไปเปลี่ยนรูปเป็นสัญญาณทางไฟฟ้าทางไมโครโฟน(หรืออุปกรณ์อื่น) คลื่นที่ถูกเปลี่ยนจะถูกนำไปที่ตัวเครื่องส่ง (Transmitter) ปรับกับคลื่นสัญญาณอีกตัวหนึ่ง ซึ่งมีความถี่สูงมาก เรียกว่าคลื่นนำพา โดยคลื่นนำพานี้จะมีความแตกต่างกันไปในแต่ละสถานีเช่น สถานี ก. มีคลื่นนำพาที่มีค่าความถี่หนึ่ง ส่วนสถานี ข. จะมีีคลื่นนำพาที่มีค่าความถี่อีกค่าอีกหนึ่ง ซึ่งต้องต่างจากสถานี ก. รวมถึงสถานีอื่นๆที่มีการตั้งอยู่ก่อนด้วย โดยคลื่นเสียงที่เข้ามาจะไปบังคับให้คลื่นนำพามีการเปลี่ยนแปลงแอมพลิจูดตามคลื่นเสียงแต่มีความถี่เท่าเดิม ซึ่งคลื่นตัวนี้จะถูกส่งออกไปในอากาศจากเสาส่ง เป็นอันเสร็จสิ้นกระบวนการส่งสัญญาณ



               หลักการทำงานของเครื่องส่งวิทยุ FM                หลักการทำงานคือ หลังจากที่ได้รับตัวสัญญาณเสียงจากไมโครโฟนหรือแหล่งเสียงอื่นๆแล้ว สัญญาณเสียงจะถูกเปลี่ยนรูปเป็นสัญญาณไฟฟ้า สัญญาณไฟฟ้านั้นจะถูกนำไปเข้าระบบ Amplifier เพื่อขยายกำลังของสัญญาณเสียงที่ได้ หลังจากขยายแล้ว ก็จะนำส่งต่อไปยังภาคของ Modulationโดยสัญญาณที่จะนำมา Modulation ด้วยนั้นคือสัญญาณจากตัว Oscillator ซึ่งจะผลิตความถี่ได้ในช่วง 88 - 108 MHz

เครื่องส่งวิทยุ

จากวิกิพีเดีย สารานุกรมเสรี
สำหรับความหมายอื่น ดูที่ วิทยุ (แก้ความกำกวม)

เครื่องรับวิทยุรุ่นเก่า
เครื่องส่งวิทยุ เป็นเครื่องมือสื่อสารทางเดียวชนิดหนึ่ง ทำหน้าที่รับและเลือกคลื่นวิทยุจากสายอากาศ แล้วนำไปสู่ภาคขยายต่อไป โดยมีช่วงความถี่ของคลื่นที่กว้าง แล้วแต่ประเภทของการใช้งาน
โดยทั่วไป คำว่า "เครื่องวิทยุ" มักจะใช้เรียกเครื่องรับสัญญาณความถี่กระจายเสียง เพื่อส่งข่าวสาร และความบันเทิง โดยมีย่านความถี่หลักๆ คือ คลื่นสั้น คลื่นกลาง และคลื่นยาว

ประวัติ

เครื่องรับวิทยุเกิดขึ้นในราว พ.ศ. 2439 ในงานจัดแสดงของรัสเซีย โดย Alexander Stepanovich Popov
ในประเทศไทยยุคแรกประมาณปี พ.ศ. 2470 ได้ติดตั้งเครื่องส่งวิทยุระบบ AM ขนาด 200 วัตต์ ณ ที่ทำการไปรษณีย์โทรเลข โดยการควบคุมของช่างวิทยุกรมไปรษณีย์โทรเลข นับเป็นครั้งแรกที่มีเครื่องส่งวิทยุกระจายเสียงออกอากาศ เครื่องรับวิทยุในยุคแรกนั้นเป็นชนิดแร่ มีเสียงเบามากและต้องใช้หูฟัง ต่อมาเปลี่ยนเป็นเครื่องรับชนิดหลอดสุญญากาศ มีความดังมากขึ้น เช่น เครื่องรับชนิด 4 หลอด ถึง 8 หลอด
ประมาณปี พ.ศ. 2500 เป็นยุคเครื่องรับวิทยุทรานซิสเตอร์ แต่ระยะแรกๆ ยังมีขนาดใหญ่มากและต่อมามีการพัฒนาอุปกรณ์และวงจรให้มีขนาดเล็กลงตามลำดับ จนสามารถนำไปในสถานที่ต่างๆได้ ทำให้กิจการวิทยุเป็นที่ยอมรับของประชาชนและมีสถานีส่งเกิดขึ้นมากมาย และมีการส่งทั้งระบบ AM และFM เช่นในปัจจุบัน

หลักการทำงาน

  • วงจรเลือกรับความถี่วิทยุ เนื่องจากสถานีส่งวิทยุหลายๆสถานี แต่ละสถานีจะมีความถี่ของตนเอง ดังนั้นจะต้องเลือกรับความถี่ที่ต้องการรับฟังในขณะนั้น
  • วงจรขยายความถี่วิทยุ ทำหน้าที่นำเอาสัญญาณความถี่วิทยุที่เลือกรับเข้ามา มาทำการขยายสัญญาณให้มีกำลังแรงมากขึ้นเพียงพอกับความต้องการ
  • วงจรดีเทคเตอร์ ทำหน้าที่ตัดคลื่นพาหะออกหรือดึงคลื่นพาหะลงดินให้เหลือเฉพาะสัญญาณความถี่เสียง (AF) เพียงอย่างเดียว
  • วงจรขยายสัญญาณเสียง ทำหน้าที่ขยายสัญญาณทางไฟฟ้าของเสียงให้มีกำลังแรงขึ้น ก่อนที่จะส่งออกยังลำโพง
  • ลำโพง เมื่อได้รับสัญญาณทางไฟฟ้าของเสียงก็จะเปลี่ยนพลังงานจากสัญญาณทางไฟฟ้าของเสียงให้เป็นเสียงรับฟังได้
เครื่องรับวิทยุ AM แบบ Superheterodyne วิทยุกระจายเสียงแบบ AM จะ มีช่วงความถี่อยู่ที่ประมาณ 535 KHz - 1,605 KHz แต่ละ สถานีจะมี Bandwidth ประมาณ 10 KHz ความถี่ IF เท่ากับ 455 KHz

วิทยุออนไลน์

สถานีวิทยุออนไลน์ คือ การให้บริการ Streaming Audio หรือการแพร่กระจายสัญญาณเสียงผ่านระบบอินเทอร์เน็ต โดยสามารถจัดผังรายการได้เองตามที่ต้องการ เพื่อตั้งสถานีวิทยุจัดรายการออนไลน์สด ทั้งพูดคุยและเปิดเพลง รูปแบบเดียวกับการจัดรายการของสถานีวิทยุปกติ

การทำงานของบล็อกไดอะแกรมเครื่องส่งวิทยุAM,FM

การทำงานของบล็อกไดอะแกรมเครื่องส่งวิทยุAM

เมื่อมีการออกอาอาศ สัญญาณเสียงต่างๆ ที่มีความถี่ต่ำมนุษย์สามารถได้ยินได้ในระยะใกล้นั้น จะถูกส่งไปเปลี่ยนรูปเป็นสัญญาณทางไฟฟ้าทางไมโครโฟน(หรืออุปกรณ์อื่น) คลื่นที่ถูกเปลี่ยนจะถูกนำไปที่ตัวเครื่องส่ง (Transmitter)ปรับกับคลื่นสัญญาณอีกตัวหนึ่ง ซึ่งมีความถี่สูงมาก เรียกว่าคลื่นนำพา โดยคลื่นนำพานี้จะมีความแตกต่างกันไปในแต่ละสถานีเช่น สถานี ก. มีคลื่นนำพาที่มีค่าความถี่หนึ่ง ส่วนสถานี ข. จะมีีคลื่นนำพาที่มีค่าความถี่อีกค่าอีกหนึ่ง ซึ่งต้องต่างจากสถานี ก. รวมถึงสถานีอื่นๆที่มีการตั้งอยู่ก่อนด้วย โดยคลื่นเสียงที่เข้ามาจะไปบังคับให้คลื่นนำพามีการเปลี่ยนแปลงแอมพลิจูดตามคลื่นเสียงแต่มีความถี่เท่าเดิม ซึ่งคลื่นตัวนี้จะถูกส่งออกไปในอากาศจากเสาส่ง เป็นอันเสร็จสิ้นกระบวนการส่งสัญญาณ

การทำงานของบล็อกไดอะแกรมเครื่องส่งวิทยุFM

หลังจากที่ได้รับตัวสัญญาณเสียงจากไมโครโฟนหรือแหล่งเสียงอื่นๆแล้ว สัญญาณเสียงจะถูกเปลี่ยนรูปเป็นสัญญาณไฟฟ้า สัญญาณไฟฟ้านั้นจะถูกนำไปเข้าระบบ Amplifier เพื่อขยายกำลังของสัญญาณเสียงที่ได้ หลังจากขยายแล้ว ก็จะนำส่งต่อไปยังภาคของModulation โดยสัญญาณที่จะนำมาModulation ด้วยนั้นคือสัญญาณจากตัวOscillator ซึ่งจะผลิตความถี่ได้ในช่วง 88 - 108 MHz ในการส่งข้อมูลข่าวสารระหว่างจุดสองจุดจะต้องผ่านสื่อกลางหรือตัวกลาง (Media) เพื่อเป็นตัวเชื่อมต่อในการส่งข้อมูลข่าวสาร สามารถแบ่งออกเป็นหลายรูปแบบด้วยกัน ดังนี้


1. ระบบที่ใช้สัญญาณไฟฟ้าเป็นพาหะ (Electrical Base Systems) ได้แก่ ระบบโทรศัพท์สาธารณะ ระบบโทรศัพท์บ้านทั่วไป ระบบสื่อสารข้อมูลแบบใช้สาย ระบบโทรเลขในอดีต เป็นต้น

2. ระบบที่ใช้คลื่นวิทยุเป็นพาหะ (Radio Base Systems) ได้แก่ ระบบโทรศัพท์เคลื่อนที่ ระบบวิทยุติดตามตัว ระบบสื่อสารผ่านดาวเทียม ระบบวิทยุกระจายเสียง และระบบไมโครเวฟ เป็นต้น

3. ระบบที่ใช้คลื่นแสงเป็นพาหะ (Light Base Systems) ได้แก่ ระบบสื่อสารข้อมูลผ่านแสงอินฟราเรดที่นำไปประยุกต์ใช้ เช่น ระบบเครือข่าย LAN ไร้สาย บลูทูธ (Bluetooth) เส้นใยนำแสง (Fiber Optic) รีโมทคอลโทรล (Remote Control) คอมพิวเตอร์แบบพกพา (Notebook) เลเซอร์ (Laser) เป็นต้น

สำหรับระบบการสื่อสารไร้สายอยู่หลายรูปแบบ เช่น วิทยุกระจายเสียง โทรทัศน์ โทรศัพท์มือถือ และสาเหตุสำคัญที่ทำให้การสื่อสารแบบไร้สายเข้ามามีบทบาทในปัจจุบัน เนื่องจากการวางสายสื่อสารแบบที่ต้องเดินสายสัญญาณในบางพื้นที่นั้นไม่สามารถทำได้ หรืออาจทำได้แต่ไม่คุ้มค่าทั้งในแง่การลงทุน การดูแลรักษาและซ่อมบำรุง เป็นต้น ในการสื่อสารระบบไร้สายสื่อตัวกลางจะมีคุณสมบัติเป็นคลื่นแม่เหล็กไฟฟ้า จะมีความถี่ในระดับต่าง ๆ ดังนั้นในการจัดสรรการใช้ความถี่จึงเป็นสิ่งที่สำคัญ

การประยุกต์ใช้งานสำหรับด้านการสื่อสารต่าง ๆ มีดังนี้

· - ระบบวิทยุสื่อสารในแบบสองทิศทาง

· - ระบบวิทยุติดตามตัว

· - ระบบโทรศัพท์เคลื่อนที่

· - ระบบสื่อสารผ่านดาวเทียม

· - ระบบสื่อสารด้วยระบบแสงอินฟราเรด

· - ระบบการสื่อสารส่วนบุคคล PCS/PCN

· - ระบบวิทยุกระจายเสียงและโทรทัศน์

เครื่องรับ-ส่งวิทยุ AM


เครื่องรับวิทยุ AM แบบ Superheterodyne 
วิทยุกระจายเสียงแบบ AM จะ มีช่วงความถี่อยู่ที่ประมาณ 535 KHz - 1,605 KHz แต่ละ สถานีจะมี Bandwidth ประมาณ 10 KHz ความถี่ IF เท่ากับ 455 KHz
http://www.hs8jyx.com/images/article/16.gif
AM radio is broadcast on several frequency bands 
วิทยุกระจายเสียงระบบ AM ส่งออกอากาศ ด้วยหลายช่วงความถี่
  • วิทยุคลื่นยาว หรือ Long wave ,LW ออกอากาศที่ความถี่ 153 kHz–279 kHz สถานีจะมี Bandwidth ประมาณ 9 KHz
  • วิทยุคลื่น ปานกลาง หรือ Medium wave , MW ออกอากาศที่ความถี่ 535 kHz–1,605 kHz. แต่ละ สถานีจะมี Bandwidth ประมาณ 10 KHz
  • วิทยุคลื่นสั้น หรือ Short wave , SW ออกอากาศที่ความถี่ 2.3 MHz – 26.1 MHz โดยจะแบ่งออกเป็น 15 ช่วงความถี่ย่อย แต่ละ สถานีจะมี Bandwidth ประมาณ 5 KHz ช่วงความถี่นี้จะเดินทางได้ไกล ที่สุด
http://www.hs8jyx.com/images/article/17.jpg
ตัวอย่างเครื่องรับ วิทยุคลื่นสั้น


RF Amplifier ทำหน้าที่ขยายสัญญาณวิทยุที่รับเข้ามาจากสายอากาศ ในส่วนนี้จะมีวงจร Tune เลือกรับมาเฉพาะ ความถี่ช่วง 535 KHz - 1,605 KHz
http://www.hs8jyx.com/images/article/18.jpg
สายอากาศของเครื่องรับวิทยุแบบ AM
วงจร Mixer 
ทำหน้าที่ผสมคลื่น จากภาค RF amp. และ Local Oscillator สัญญาณที่ออกมาทั้งหมด มี 4 ส่วนคือ
http://www.hs8jyx.com/images/article/19.gif
1. ความถี่ RF ที่รับเข้ามา 
2. ความถี่ OSC ที่ส่งมาจาก Local Oscillator 
3. ความถี่ผลต่างระหว่าง OSC กับ RF (OSC - RF) = IF = 455 KHz 
4. ความถี่ผลบวกระหว่าง OSC กับ RF (OSC + RF)
ความถี่ที่ส่งไปยัง ภาค IF มีความถี่เดียวคือ ความถี่ ผลต่าง 455 KHz ชึ่งไม่ว่า RF จะรับความถี่ใดเข้ามา IF ก็ยังคงเท่าเดิม
วงจร Local Oscillator หรือวงจร OSC. ทำหน้าที่ผลิดความถี่ขึ้นมา มีความแรงคงที่ ส่วนความถี่จะเปลี่ยนแปลงได้ ตาม RF ที่รับเข้ามา ซึ่งภาค OSC จะผลิดความถี่ขึ้นมาสูงกว่า RF เท่ากับ IF คือ 455 KHz เสมอ เช่น รับสัญญาณ AM จากสถานี ความถี่ 600 KHz ความถี่ของวงจร OSC
FOSC = fRF + fIF 
= 600 KHz + 455 KHz 
= 1,055 KHz
ในวิทยุ AM บางรุ่น อาจจะรวม ภาค Mixer กับ OSC เข้าด้วยกัน เรียกว่า Converter ถ้ารวม 3 วงจรเข้าด้วยกัน คือ RF Amp + Mixer + OSC. เราจะเรียกว่า ภาค Front End
http://www.hs8jyx.com/images/article/20.jpg
รูปความถี่ Local OSC. ที่ความถี่ต่ำสุดของวิทยุ AM
http://www.hs8jyx.com/images/article/21.jpg
รูปความถี่ Local OSC. ที่ความถี่สูงสุดของวิทยุ AM
http://www.hs8jyx.com/images/article/22.gif
Superheterodyne AM radio front end with improved front end filtering จากรูป ตัวอย่าง เป็นวงจรวิทยุ AM แบบ Superheterodyne ที่เพิ่มวงจรกรองสัญญาณเข้าไป วงจรกรอง เป็น L และ C ก่อนที่จะเข้าวงจร Mixer สมมุติว่าเราต้องการรับสัญญาณที่ความถี่ 1,490 KHz วงจร OSC จะผลิตความถี่ขึ้นมา 1,945 KHz และความถี่ IF ก็เป็น 455 KHz จากรูป การเปลี่ยนความถี่ ของ RF และ OSC เราจะทำพร้อมกันโดย เปลียนค่าของ C
http://www.hs8jyx.com/images/article/23.jpg
dual ganged-variable capacitor
วงจร IF Amp คำว่า IF ก็คือ Intermediate Frequency คือความถี่ปานกลาง เกิดจากผลต่างของ วงจร OSC กับ RF ที่รับเข้ามา จะได้ความถี่ IF 455 KHz วงจรนี้จะขยายสัญญาณ 455 KHz เพื่อให้แรงขึ้นก่อนส่งไปยัง วงจร Detector ต่อไป
วงจร AM detector
ทำหน้าที่ตัดสัญญาณ IF ออกครึ่งหนึ่งและกรองเอาความถี่ IF ออก เหลือเฉพาะความถี่เสียง (AF) ส่งต่อไปยัง ภาคขยายเสียง มีสัญญาณบางส่วนจะถูก กรองเป็นไฟ DC ส่งย้อนกลับไปยังภาคขยาย IF เป็นแรงไฟ AGC (Automatic Gain Control) ทำให้ความแรงของสัญญาณที่รับได้มีขนาดใกล้เคียงกัน
http://www.hs8jyx.com/images/article/24.gif


การมอดูเลตทางแอมพลิจูด
การมอดูเลตแบบ AM นั้น เราใช้สัญญาณข่าวสาร สมมติว่าให้สัญญาณเสียงมอดูเลตลงบนสัญญาณพาหะ เพื่อเปลี่ยนคุณสมบัติทางแอมพลิจูด (หรือขนาด)ของพาหะ ในรูปที่ 1.8 เราใช้สัญญาณพาหะ (ก) ผสมกับสัญญาณเสียง (ข) ลงในวงจรนอนลิเนียร์ (nonlinear) เช่น ใช้ไดโอดหรือทรานซิสเตอร์โดยให้มีจุดทำงานอยู่ในบริเวณที่ไม่เป็นลิเนียร์ ในอุปกรณ์แบบนอนลิเนียร์จะทำให้เกิดสัญญาณ AM ดังรูปที่ 1.8 (ค) ขึ้น จะสังเกตว่าสัญญาณพาหะซึ่งถูกมอดูเลตแล้วจะมีแอมพลิจูด (ขนาด) เปลี่ยนแปลงตามสัญญาณเสียง สัญญาณเสียงที่ปนอยู่ในสัญญาณ AM จะเป็นกรอบคลื่น (envelope) บนและล่าง ดังเช่นรูปที่1.9 (ก) เป็นสัญญาณเสียงที่มีแอมพลิจูดขนาดหนึ่ง โดยรูปที่ 1.9 (ข) คือสัญญาณ AM ที่มีสัญญาณเสียงแอมพลิจูดเล็กลงดังรูปที่ 1.9 (ค) สัญญาณ AM ที่เกิดขึ้นก็จะมีกรอบ (การเปลี่ยนแปลงทางแอมพลิจูด) เล็กลงด้วย ดังรูปที่ 1.9 (ง)





https://wiki.stjohn.ac.th/groups/poly_computer/wiki/4f0ad/images/__thumbs__/2bf66.jpg
Click for full-size image


รูปที่1.8 การมอดูเลตทางแอมพลิจูดโดยใช้อุปกรณ์นอนลิเนียร์
https://wiki.stjohn.ac.th/groups/poly_computer/wiki/4f0ad/images/__thumbs__/bbe0e.jpg
Click for full-size image


รูปที่1.9 การใช้สัญญาณเสียงที่มีขนาดมากและน้อยเพื่อมดดูเลตบนคลื่นพาหนะ


เปอร์เซ็นต์ของการมอดูเลต
ในรูปที่ 1.9 จะเห็นว่าปริมาณการมอดูเลตของสัญญาณเสียงลงบนพาหะไม่เท่ากัน สังเกตได้ว่า แอมพลิจูดของพาหะเปลี่ยนแปลงในรูปที่ 1.9 (ข) และเปลี่ยนแปลงน้อยในรูปที่ 1.9 (ง) ปริมาณการมอดูเลตนี้นิยมวัดเปอร์เซ็นต์การมอดูเลตเท่ากับศูนย์ (0 เปอร์เซ็นต์) ในรูปที่ 1.10 (ก) สมมติว่า พาหะมีแอมพลิจูดจากยอดบวกถึงยอดลบเท่ากับ 40 Vp-p
ในรูปที่ 1.10 (ข) พาหะถูกมอดูเลตด้วยสัญญาณเสียงเต็มที่ 100 เปอร์เซ็นต์ แอมพลิจูดของพาหะจะตกลงมาถึงศูนย์และแอมพลิจูดยอดบวกถึงยอดลบของพาหะจะให้สูงสุด 80 V p-p อย่างไรก็ตาม ค่าแอมพลิจูดโดยเฉลี่ยของพาหะยังคงเป็น 40 Vp-p เท่าเดิม
ในรูปที่ 1.10 (ค) พาหะถูกมอดูเลตเพียง 50 เปอร์เซ็นต์ แอมพลิจูดของคลื่นพาหะสูง 60 V p-p และต่ำสุด 20 Vp-p แอมพลิจูดของพาหะเท่ากับ 40 Vp-pเช่นเดิม เราสามารถใช้สูตรคำนวณได้ดังสมการต่อไปนี้
เปอร์เซ็นต์การมอดูเลต =
ดูตัวอย่างการคำนวณของรูปที่ 1.10 (ค)
https://wiki.stjohn.ac.th/groups/poly_computer/wiki/4f0ad/images/8628d.jpg
รูปที่1.10 การวัดเปอร์เซ็นต์การมอดูเลต
ปกติเราต้องการให้เปอร์เซ็นต์การมอดูเลตมีค่าสูงสุด เพื่อว่า สัญญาณเสียงที่รับได้ที่เครื่องรับจะมีกำลังแรง (เสียงดัง) ดูรูปที่ 1.11 เนื่องจากเครื่องรับ AMจะเปลี่ยนคลื่น AM เป็นสัญญาณเสียง โดยการแยกเอาแต่เฉพาะสัญญาณที่เข้าไปมอดูเลตลงบนพาหะกลับคืนจากคลื่น AM คือดีมอดนั่นเอง สัญญาณเสียงที่รับได้ในกรณีที่ว่ามอดูเลตมาแรง (เปอร์เซ็นต์มอดูเลตมีค่าสูง) จะได้เสียงดังกว่า นั่นคือ ในที่นี้รูปที่ 1.11 (ข) จะให้สัญญาณเสียงดังกว่ารูปที่ 1.1 (ก)เพราะเปอร์เซ็นต์การมอดูเลตมากกว่า
อย่างไรก็ตามการมอดูเลตต้องไม่สูงเกินไป (ไม่เกิน 100 เปอร์เซ็นต์) เพราะจะทำให้สัญญาณเสียงที่ได้รับที่ได้ที่เครื่องรับเกิดความเพี้ยน การมอดูเลตมากเกินไปนี้เรียกว่าการมอดูเลตเกิน (overmodulation) หรือเรียกย่อ ๆ ว่า โอเวอร์มอด จะเห็นว่าแอมพลิจูดสัญญาณ AM ลดลงได้ไม่ต่ำกว่าศูนย์ ไม่ว่าจะมอดูเลต


https://wiki.stjohn.ac.th/groups/poly_computer/wiki/4f0ad/images/__thumbs__/47627.jpg
Click for full-size image
รูปที่11 แอมพลิจูดของสัญญาณเสียงที่ดีมอดคืนมาได้ที่เครื่องรับจะมีความแรงมากน้อยขึ้นอยู่กับเปอร์เซ็นต์ของมอดูเลต



คลื่นวิทยุ (Radio waves) หรือ เรียกได้อีกชื่อหนึ่งว่า คลื่นพาหะ Carier Wave เป็นคลื่นแม่เหล็กไฟฟ้าชนิดหนึ่งที่เกิดขึ้นในช่วงความถี่วิทยุบนเส้นสเปกตรัมแม่เหล็กไฟฟ้า คลื่นวิทยุไม่ต้องอาศัยตัวกลางในการเคลื่อนที่ ใช้ในการสื่อสารมี 2 ระบบคือ A.M. และ F.M. ความถี่ของคลื่น หมายถึง จำนวนรอบของการเปลี่ยนแปลงของคลื่น ในเวลา 1 นาที คลื่นเสียงมีความถี่ช่วงที่หูของคนรับฟังได้ คือ ตั้งแต่ 20 เฮิร์ตถึง 20 กิโลเฮิรตรซ์ (1 KHz =1,000 Hz) ส่วนคลื่นวิทยุเป็นคลื่นแม่เหล็กไฟฟ้าความถี่สูง อาจมีตั้งแต่ 3 KHz ไปจนถึง 300 GHz (1 GHz = พันล้าน Hz) คลื่นวิทยุแต่ละช่วงความถี่จะถูกกำหนดให้ใช้งานด้านต่างๆ ตามความเหมาะสม
ประวัติและความเป็นมา   
      James Clerk Maxwell เจมส์ เคลิร์ก แมกซ์เวลล์ เป็นผู้ค้นพบระหว่างการตรวจสอบทางคณิตศาสตร์ เมื่อ ปี ค.ศ. 1865 จากการสังเกตคุณสมบัติของแสงบางประการที่คล้ายคลึงกับคลื่น และคล้ายคลึงกับผลการเฝ้าสังเกตกระแสไฟฟ้าและแม่เหล็ก เขาจึงนำเสนอสมการที่อธิบายคลื่นแสงและคลื่นวิทยุในรูปแบบของคลื่นแม่เหล็กไฟฟ้าที่เดินทางในอวกาศ ปี ค.ศ. 1887 เฮนริค เฮิร์ตซ ได้สาธิตสมการของแมกซ์เวลล์ว่าเป็นความจริงโดยจำลองการสร้างคลื่นวิทยุขึ้นในห้องทดลองของเขา หลังจากนั้นก็มีสิ่งประดิษฐ์ต่างๆ เกิดขึ้นมากมาย และทำให้เราสามารถนำคลื่นวิทยุมาใช้ในการส่งข้อมูลผ่านห้วงอวกาศได้
     เมื่อ พ.ศ. 2431 นักฟิสิกส์ชาวเยอรมันเชื้อสายยิวผู้หนึ่งชื่อ ไฮน์ริช เฮิรตซ์ ได้ค้นพบ คลื่นเเม่เหล็กไฟฟ้าระหว่างขั้วไฟฟ้าสองขั้วที่เกิดจากการสปาร์ก การค้นพบครั้งนี้ถือได้ว่าเป็นการค้นพบทางวิทยาศาสตร์ครั้งสำคัญที่สุดครั้งหนึ่ง เพราะต่อมาได้มีการนำคลื่นแม่เหล็กไฟฟ้าที่เฮิรตซ์ค้นพบ (ซึ่งในสมัยนั้นเรียกว่า คลื่นเฮิรตซ์ (Hertzian waves) 
โดยใน พ.ศ. 2441 มาร์โคนี นักประดิษฐ์ชาวอิตาเลียน สามารถสร้างระบบส่งและรับโทรเลขโดยใช้คลื่นแม่เหล็กไฟฟ้าได้เป็นผลสำเร็จถัดมาอีก 3 ปี คือ ใน พ.ศ. 2444 มาร์โคนี ประสบความสำเร็จครั้งใหญ่เมื่อสามารถส่งคลื่นเฮิรตซ์ข้ามมหาสมุทรแอตแลนติก จากประเทศอังกฤษไปยังนิวฟาวน์แลนด์ ประเทศคานาดา ความสำเร็จของมาร์โคนีเป็นการเปิดโฉมหน้าใหม่ของการติดต่อสื่อสารระยะไกลโดยใช้คลื่นแม่เหล็กไฟฟ้าเป็นครั้งแรก มีผลทำให้การสื่อสารเป็นไปอย่างสะดวกและรวดเร็ว ต่อมาเมื่อมีการผสมสัญญาณเสียง สัญญาณภาพเข้ากับคลื่นแม่เหล็กไฟฟ้าได้ก็ทำให้เกิดวิทยุกระจายเสียง และวิทยุโทรทัศน์

ความคิดเห็น